After pulling yet another dupe today, I realized that I was overcomplicating this problem. If I have X out of 6 dragons after Y pulls, the probability of me getting a new one is (6-X)/6. This is more easily written as a recursive function. Let P(x,y) be the probability of having x dragons after y pulls. Obviously P(1,1) = 1, as a base.
Let’s say I have 4 dragons after 7 pulls. After 8, I have a 2/6 chance of getting 5, 4/6 of remaining at 4.
(x,y) has a (x/6) chance to become (x,y+1), (6-x)/6 chance to become (x+1,y+1). Reversing, we get:
P(x,y) = P(x,y-1) (x/6) + P(x-1,y-1)((6-(x-1))/6)
This is much easier to write as an excel formula.
6 digit probability up to 50 eggs
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 1.000000 | |||||
2 | 0.166667 | 0.833333 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
3 | 0.027778 | 0.416667 | 0.555556 | 0.000000 | 0.000000 | 0.000000 |
4 | 0.004630 | 0.162037 | 0.555556 | 0.277778 | 0.000000 | 0.000000 |
5 | 0.000772 | 0.057870 | 0.385802 | 0.462963 | 0.092593 | 0.000000 |
6 | 0.000129 | 0.019933 | 0.231481 | 0.501543 | 0.231481 | 0.015432 |
7 | 0.000021 | 0.006752 | 0.129029 | 0.450103 | 0.360082 | 0.054012 |
8 | 0.000004 | 0.002268 | 0.069016 | 0.364583 | 0.450103 | 0.114026 |
9 | 0.000001 | 0.000759 | 0.036020 | 0.277563 | 0.496614 | 0.189043 |
10 | 0.000000 | 0.000254 | 0.018516 | 0.203052 | 0.506366 | 0.271812 |
11 | 0.000000 | 0.000085 | 0.009427 | 0.144626 | 0.489656 | 0.356206 |
12 | 0.000000 | 0.000028 | 0.004770 | 0.101131 | 0.456255 | 0.437816 |
13 | 0.000000 | 0.000009 | 0.002404 | 0.069806 | 0.413923 | 0.513858 |
14 | 0.000000 | 0.000003 | 0.001208 | 0.047739 | 0.368204 | 0.582845 |
15 | 0.000000 | 0.000001 | 0.000606 | 0.032430 | 0.322750 | 0.644213 |
16 | 0.000000 | 0.000000 | 0.000304 | 0.021923 | 0.279768 | 0.698004 |
17 | 0.000000 | 0.000000 | 0.000152 | 0.014767 | 0.240448 | 0.744632 |
18 | 0.000000 | 0.000000 | 0.000076 | 0.009921 | 0.205296 | 0.784707 |
19 | 0.000000 | 0.000000 | 0.000038 | 0.006652 | 0.174387 | 0.818923 |
20 | 0.000000 | 0.000000 | 0.000019 | 0.004454 | 0.147540 | 0.847988 |
21 | 0.000000 | 0.000000 | 0.000010 | 0.002979 | 0.124434 | 0.872577 |
22 | 0.000000 | 0.000000 | 0.000005 | 0.001991 | 0.104688 | 0.893317 |
23 | 0.000000 | 0.000000 | 0.000002 | 0.001329 | 0.087904 | 0.910765 |
24 | 0.000000 | 0.000000 | 0.000001 | 0.000887 | 0.073696 | 0.925415 |
25 | 0.000000 | 0.000000 | 0.000001 | 0.000592 | 0.061709 | 0.937698 |
26 | 0.000000 | 0.000000 | 0.000000 | 0.000395 | 0.051622 | 0.947983 |
27 | 0.000000 | 0.000000 | 0.000000 | 0.000264 | 0.043150 | 0.956586 |
28 | 0.000000 | 0.000000 | 0.000000 | 0.000176 | 0.036046 | 0.963778 |
29 | 0.000000 | 0.000000 | 0.000000 | 0.000117 | 0.030097 | 0.969786 |
30 | 0.000000 | 0.000000 | 0.000000 | 0.000078 | 0.025120 | 0.974802 |
31 | 0.000000 | 0.000000 | 0.000000 | 0.000052 | 0.020959 | 0.978989 |
32 | 0.000000 | 0.000000 | 0.000000 | 0.000035 | 0.017483 | 0.982482 |
33 | 0.000000 | 0.000000 | 0.000000 | 0.000023 | 0.014581 | 0.985396 |
34 | 0.000000 | 0.000000 | 0.000000 | 0.000015 | 0.012159 | 0.987826 |
35 | 0.000000 | 0.000000 | 0.000000 | 0.000010 | 0.010137 | 0.989852 |
36 | 0.000000 | 0.000000 | 0.000000 | 0.000007 | 0.008451 | 0.991542 |
37 | 0.000000 | 0.000000 | 0.000000 | 0.000005 | 0.007045 | 0.992950 |
38 | 0.000000 | 0.000000 | 0.000000 | 0.000003 | 0.005872 | 0.994125 |
39 | 0.000000 | 0.000000 | 0.000000 | 0.000002 | 0.004895 | 0.995103 |
40 | 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.004080 | 0.995919 |
41 | 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.003400 | 0.996599 |
42 | 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.002834 | 0.997166 |
43 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002362 | 0.997638 |
44 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001968 | 0.998032 |
45 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001640 | 0.998360 |
46 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001367 | 0.998633 |
47 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001139 | 0.998861 |
48 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000949 | 0.999051 |
49 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000791 | 0.999209 |
50 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000659 | 0.999341 |
To answer the OP, after 20 eggs, missing 1 dragon probability is 0.147540, about 1 in 6.778, missing 2 is 0.004454, 1 in 224.5.